

Reforming Radiation Risk Regulation

Fixing LNT and ALARA to Unlock Nuclear Energy's Full Potential

by Nick Loris and Prasanna Pydipalli

September 2025

EXECUTIVE SUMMARY

In May 2025, President Trump issued Executive Order 14300, Ordering the Reform of the Nuclear Regulatory Commission (NRC), mandating a modernization of U.S. radiation protection standards. The order explicitly calls for a re-evaluation of the Linear No-Threshold (LNT) model and the ALARA principle (As Low As Reasonably Achievable).¹ These two frameworks have guided nuclear regulation for decades. While these models may have been defensible when first adopted, they have hardened into regulatory doctrines that no longer align with the best available science, economic realities, or the nation's strategic energy goals.

The timing is critical. The United States is striving to meet growing energy needs, accelerate the deployment of advanced reactors, and maintain global leadership in energy innovation. Widescale deployment of nuclear power can help improve energy security and lower emissions. However, outdated radiation standards have imposed unnecessary costs, slowed innovation, and reinforced public fear for years and can no longer be ignored. By linking regulatory modernization to bipartisan priorities—clean energy, energy security, and industrial competitiveness—the Executive Order provides an opportunity to modernize these standards in line with evidence while safeguarding public health. Reform is not merely desirable; it is a strategic necessity and essential for improving the economic outlook for nuclear power.

HISTORY: ORIGINS AND ENTRENCHMENT OF LNT AND ALARA

The LNT hypothesis arose from Hermann Muller's 1927 experiments on fruit flies, which demonstrated that radiation can induce heritable mutations. Interpreted through Cold War fears of fallout and atomic weapons, this research shaped the belief that any dose of ionizing radiation linearly increases cancer risk. In 1956, the National Academy of Sciences' BEAR report institutionalized LNT as the foundation for radiation protection.² This decision, grounded in uncertainty rather than empirical evidence, became embedded in regulatory DNA.^{3,4}

The ALARA principle, introduced by the NRC in 1975, was initially meant to apply LNT pragmatically by requiring exposures to be kept "as low as reasonably achievable" while factoring in cost and feasibility.^{5,6} Over time, however, ALARA lost its balancing intent. Regulatory enforcement increasingly drove operators to minimize exposures far below natural background radiation levels, regardless of benefit. For example, multi-million-dollar plant modifications have been mandated to achieve dose reductions lower than what a person receives on a cross-country flight or from consuming a banana.⁷ These reductions became mandatory for licensing and compliance, fueling a culture of regulatory absolutism.

This conservative bias was reinforced through NRC regulations (10 CFR Part 20), the Environmental Protection Agency's carcinogen risk models, which extended LNT to chemicals, and judicial rulings such as *Union of Concerned Scientists v. NRC* (1987), which upheld strict interpretations of "adequate protection."⁸ Over the decades, what began as a precaution evolved into an inflexible and costly regulatory regime.

Outdated radiation standards have imposed unnecessary costs, slowed innovation, and reinforced public fear for years and can no longer be ignored.

PROBLEMS AND CHALLENGES WITH THE CURRENT MODEL

Scientific Evidence Challenges LNT

Modern research fundamentally challenges the assumption that risk increases linearly at low doses. Radiobiology shows that cells are not passive victims of radiation damage; they possess complex repair systems and adaptive responses that neutralize low-dose effects. Some studies even suggest hormesis—where low doses may stimulate protective biological mechanisms—though this remains debated.^{9, 10, 11}

Epidemiological evidence reinforces this shift.¹² Populations in Kerala, India, exposed to natural radiation levels up to 80 times higher than average, show no increased cancer rates.¹³ The Taiwan cobalt-60 apartment incident, where residents lived for years in buildings contaminated with cobalt-60, recorded cancer incidences no higher than national baselines.^{14, 15} Nuclear shipyard worker studies also reveal no significant increase in risk at low exposures.^{16, 17} While INWORKS data suggest measurable risk at higher cumulative doses,¹⁸ uncertainties dominate below 100 millisieverts. Reports by UNSCEAR and OECD conclude that applying linear risk models at these doses is scientifically unjustified and may significantly overestimate risk.^{19, 20, 21}

Economic Burdens of Over-Conservatism

The costs of maintaining ultra-conservative standards are enormous. ALARA compliance inflates construction and operational budgets for nuclear plants by billions of dollars.^{22, 23, 24} Decommissioning and waste management projects are similarly burdened, with expenditures driven by thresholds disconnected from actual health risk.²⁵ The Department of Energy has repeatedly faced cost escalations in cleanup projects, where marginal dose reductions came at disproportionate expense.^{26, 27} Medical isotope production—critical for cancer diagnostics and treatment—is also constrained, raising healthcare costs and limiting availability. The UK filter case starkly illustrates this inefficiency: regulators required the installation of an elaborate system to cut exposure by 0.0001 mSv/year (a dose equivalent to a banana), at a multi-million-dollar cost and months of delay, with no measurable benefit.²⁸

RADIOPHOBIA AND PUBLIC MISINFORMATION

The persistence of LNT fuels radiophobia. The message that “any radiation is harmful” distorts public understanding, drives opposition to nuclear energy, and slows project approvals through litigation and protests. It also skews disaster responses; during Fukushima, fear-driven evacuations led to more fatalities than radiation itself.²⁹ Moreover, regulatory inconsistency—where carcinogenic chemicals have exposure thresholds but radiation does not—undermines the credibility of U.S. policy.

Moving Toward a Risk-Informed Model

International experience shows that risk-informed regulation works. The United Kingdom applies cost-benefit analyses under As Low As Reasonably Practicable (ALARP),^{30, 31} rejecting measures where costs vastly exceed benefits.³² France and South Korea are shifting toward threshold-based models informed by occupational data. India’s Kerala cohort demonstrates that high natural radiation does not necessarily increase cancer risk.³³ Even within the U.S., DOE cleanup policies have recognized that “over-cleanups” are economically irrational.^{34, 35} Studies like INWORKS and the Japanese Life Span Study confirm real risk at high doses but reveal uncertainty at low exposures,^{36, 37} undermining rigid linearity. Reforming LNT and ALARA is therefore not about loosening protections; it is about ensuring that protections are meaningful, evidence-based, and economically rational.

LEGISLATIVE AND ADMINISTRATIVE PATHWAYS FORWARD

Reform must combine Congressional action with administrative leadership to be effective.

Legislative Actions

- Mandate Dose Thresholds: Congress should direct the NRC and EPA to adopt minimum dose thresholds (e.g., 10-100 mSv/year) that exempt negligible exposures from triggering regulation.³⁸
- Repeal LNT as Default: Statutes should allow agencies to adopt threshold or stochastic models where supported by evidence, replacing LNT as the mandated default.³⁹
- Rely on the best available science to guide standards: Academia has produced ample research informing the need to set better standards.⁴⁰ Congress could require agencies to review standards every 5 years to ensure the standard reflects the best available science.
- Reform NEPA Guidelines: Update NEPA so that exposures, at a minimum, do not require exhaustive Environmental Impact Statements, streamlining approvals for reactors and isotope facilities.^{41,42}

Administrative Actions

- Revise NRC Guidance: Integrate cost-benefit logic and dose thresholds into NRC regulatory guides and NUREGs.^{43,44,45}
- Reframe ALARA and Set a New Standard that Protects Public Health and Safety: Replace “as low as possible” with a reasonable standard to meet public health and safety requirements, and ensure reductions are only pursued when benefits exceed costs.^{46,47,48}
- Interagency Coordination: Establish a lead agency to establish the standard that harmonizes frameworks across agencies (EPA, DOE, and NRC) and removes redundant rules.^{49,50}
- Modernize Public Communication: Federal agencies must contextualize radiation risk through clear comparisons (e.g., air travel, natural background) to rebuild public trust.⁵¹

CONCLUSION: SEIZING THE MOMENT FOR RISK-INFORMED REFORM

With an Executive Order demanding modernization⁵² and legislative momentum via the ADVANCE Act⁵³, the United States has a unique opportunity to align radiation regulation with science, protect public health with integrity, and unleash the potential of nuclear innovation. By moving from outdated fear-based models to proportionate, risk-informed regulation, the U.S. can lead the next era of safe, reliable, clean, and globally competitive nuclear energy.

Nick Loris is the Executive Vice President of Policy at C3 Solutions.

Prasanna Pydipalli is a research associate at C3 Solutions.

WORKS CITED

- 1 Executive Order on Reforming the Nuclear Regulatory Commission (May 2025) <https://www.whitehouse.gov/presidential-actions/2025/05/ordering-the-reform-of-the-nuclear-regulatory-commission/>
- 2 Calabrese, E.J. – The Linear No-Threshold Model: A Historical Perspective <https://doi.org/10.1016/j.envres.2009.10.001>
- 3 NCRP Report No. 136 – Evaluation of the Linear Nonthreshold Dose-Response Model for Ionizing Radiation (2001) <https://ncrponline.org/shop/reports/report-no-136-evaluation-of-the-linear-nonthreshold-dose-response-model-for-ionizing-radiation-2001/>
- 4 BEIR VII Phase 2 – National Academies of Sciences <https://nap.nationalacademies.org/catalog/11340/health-risks-from-exposure-to-low-levels-of-ionizing-radiation>
- 5 U.S. NRC: Radiation Protection and the ALARA Principle <https://www.nrc.gov/about-nrc/radiation/protects-you/ala.html>
- 6 DOE ALARA Handbook <https://www.energy.gov/sites/prod/files/2014/04/f14/ala-v2.pdf>
- 7 U.S. NRC: Radiation Protection and the ALARA Principle <https://www.nrc.gov/about-nrc/radiation/protects-you/ala.html>
- 8 EPA: Radiation Risk Assessment (guidance PDF) <https://www.epa.gov/sites/default/files/2015-05/documents/402-b-00-001.pdf>
- 9 DOE Office of Science – Low Dose Radiation Research <https://science.osti.gov/ber/Research/Biological-Systems-Science/Low-Dose-Radiation>
- 10 BEIR VII (chapter link for detailed dose-response discussion) <https://nap.nationalacademies.org/read/11340/chapter/19>
- 11 Systematic Review: “Low dose radiation and health effects” (open access) <https://pmc.ncbi.nlm.nih.gov/articles/PMC8504601/>
- 12 OECD/IAEA Low-Dose Radiation Reports https://world-nuclear.org/images/articles/Low-Dose-Radiation-Report-Final-23-Feb_2.pdf
- 13 Journal of Occupational & Environmental Medicine (2024): Low-dose radiation & solid tumor mortality https://journals.lww.com/joem/full-text/2024/06000/low_dose_radiation_and_solid_tumors_mortality_risk.14.aspx
- 14 NCBI Book: Low Dose Radiation Exposure and Health Effects <https://www.ncbi.nlm.nih.gov/books/NBK586463/>
- 15 Systematic Review: “Low dose radiation and health effects” (open access) <https://pmc.ncbi.nlm.nih.gov/articles/PMC8504601/>
- 16 NCBI Book: Low Dose Radiation Exposure and Health Effects <https://www.ncbi.nlm.nih.gov/books/NBK586463/>
- 17 Systematic Review: “Low dose radiation and health effects” (open access) <https://pmc.ncbi.nlm.nih.gov/articles/PMC8504601/>
- 18 INWORKS Study: Radiation Worker Risk Assessments <https://pmc.ncbi.nlm.nih.gov/articles/PMC6177261/>
- 19 UNSCEAR 2024 Low-Dose Radiation Scientific Annex C (Biological mechanisms) https://www.unscear.org/unscear/uploads/documents/UNSCEAR_2024_Report_Vol.I.pdf
- 20 OECD/IAEA Low-Dose Radiation Reports https://world-nuclear.org/images/articles/Low-Dose-Radiation-Report-Final-23-Feb_2.pdf
- 21 ScienceDirect Review: Low and Moderate Dose Cancer Risk <https://www.sciencedirect.com/science/article/pii/S0160412021006085>
- 22 Works in Progress: “The bad science behind expensive nuclear regulation” <https://www.worksinprogress.news/p/the-bad-science-behind-expensive>
- 23 Journal of Occupational & Environmental Medicine (2024): Low-dose radiation & solid tumor mortality https://journals.lww.com/joem/full-text/2024/06000/low_dose_radiation_and_solid_tumors_mortality_risk.14.aspx
- 24 American Action Forum: Putting nuclear regulatory costs in context <https://www.americanactionforum.org/research/putting-nuclear-regulato>

ry-costs-context/

- 25 ICRP Publication 154 (Optimization of radiation protection practices) <https://www.icrp.org/publication.asp?id=ICRP+Publication+154>
- 26 GAO Report: Hanford Cleanup Costs and Alternatives <https://www.gao.gov/products/gao-23-106880>
- 27 EPA: Guidance on Assessing Radiological Cleanup Criteria (archival) <https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=910007DP.TXT>
- 28 Works in Progress: "The bad science behind expensive nuclear regulation" <https://www.worksinprogress.news/p/the-bad-science-behind-expensive>
- 29 PubMed Study: Health Effects of Fukushima Evacuation <https://pubmed.ncbi.nlm.nih.gov/28142046/>
- 30 ICRP Publication 154 (Optimization of radiation protection practices) <https://www.icrp.org/publication.asp?id=ICRP+Publication+154>
- 31 DOE ALARA Handbook <https://www.energy.gov/sites/prod/files/2014/04/f14/ala-v2.pdf>
- 32 ICRP Publication 154 (Optimization of radiation protection practices) <https://www.icrp.org/publication.asp?id=ICRP+Publication+154>
- 33 OECD/IAEA Low-Dose Radiation Reports https://world-nuclear.org/images/articles/Low-Dose-Radiation-Report-Final-23-Feb_2.pdf
- 34 GAO Report: Hanford Cleanup Costs and Alternatives <https://www.gao.gov/products/gao-23-106880>
- 35 EPA: Guidance on Assessing Radiological Cleanup Criteria (archival) <https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=910007DP.TXT>
- 36 INWORKS Study: Radiation Worker Risk Assessments <https://pmc.ncbi.nlm.nih.gov/articles/PMC6177261/>
- 37 The Lancet—INWORKS Leukemia Risk Study Update <https://www.thelancet.com/journals/lanhae/article/PIIS2352-3026%2815%2900201-X/full-text>
- 38 OECD "Future Nuclear Regulatory Challenges" Report https://www.oecd.org/content/dam/oeecd/en/publications/reports/1998/06/future-nuclear-regulatory-challenges_g1gh1c9b/9789264163300-en.pdf
- 39 NCRP Report No. 136 – Evaluation of the Linear Nonthreshold Dose-Response Model for Ionizing Radiation (2001) <https://ncrponline.org/shop/reports/report-no-136-evaluation-of-the-linear-nonthreshold-dose-response-model-for-ionizing-radiation-2001/>
- 40 DOE Office of Science – Low Dose Radiation Research <https://science.osti.gov/ber/Research/Biological-Systems-Science/Low-Dose-Radiation>
- 41 Environmental Energy Brief: NRC Proposes Advanced Reactor Licensing Framework <https://environmentalenergybrief.sidley.com/2024/11/08/u-s-nuclear-regulatory-commission-proposes-new-licensing-framework-for-advanced-reactors/>
- 42 MARSSIM (EPA/DoD/NRC/DOE decontamination & survey manual) https://www.epa.gov/sites/default/files/2017-09/documents/marssim_manual_rev1.pdf
- 43 ICRP Publication 154 (Optimization of radiation protection practices) <https://www.icrp.org/publication.asp?id=ICRP+Publication+154>
- 44 EPA: Radiation Risk Assessment (guidance PDF) <https://www.epa.gov/sites/default/files/2015-05/documents/402-b-00-001.pdf>
- 45 EPA: Guidance on Assessing Radiological Cleanup Criteria (archival) <https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=910007DP.TXT>
- 46 U.S. NRC: Radiation Protection and the ALARA Principle <https://www.nrc.gov/about-nrc/radiation/protects-you/alarra.html>
- 47 NCBI Book: Low Dose Radiation Exposure and Health Effects <https://www.ncbi.nlm.nih.gov/books/NBK586463/>
- 48 DOE ALARA Handbook <https://www.energy.gov/sites/prod/files/2014/04/f14/ala-v2.pdf>
- 49 MARSSIM (EPA/DoD/NRC/DOE decontamination & survey manual) https://www.epa.gov/sites/default/files/2017-09/documents/marssim_manual_rev1.pdf

50 EPA: Guidance on Assessing Radiological Cleanup Criteria (archival) <https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=910007DP.TXT>

51 Breakthrough Institute: How to Regulate Radiation Exposure <https://thebreakthrough.org/issues/energy/how-to-regulate-radiation-exposure>

52 Executive Order on Reforming the Nuclear Regulatory Commission (May 2025) <https://www.whitehouse.gov/presidential-actions/2025/05/ordering-the-reform-of-the-nuclear-regulatory-commission/>

53 ADVANCE Act Summary – Senate Environment & Public Works Committee <https://www.epw.senate.gov/public/index.cfm/2023/7/senate-passes-epw-committee-nuclear-innovation-legislation>

